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SUMMARY

An unsteady Navier–Stokes solver for incompressible fluid is coupled with a level set approach to
describe free surface motions. The two-phase flow of air and water is approximated by the flow of a
single fluid whose properties, such as density and viscosity, change across the interface. The free surface
location is captured as the zero level of a distance function convected by the flow field. To validate the
numerical procedure, two classical two-dimensional free surface problems in hydrodynamics, namely the
oscillating flow in a tank and the waves generated by the flow over a bottom bump, are studied in
non-breaking conditions, and the results are compared with those obtained with other numerical
approaches. To check the capability of the method in dealing with complex free surface configurations,
the breaking regime produced by the flow over a high bump is analyzed. The analysis covers the
successive stages of the breaking phenomenon: the steep wave evolution, the falling jet, the splash-up and
the air entrainment. In all phases, numerical results qualitatively agree with the experimental observa-
tions. Finally, to investigate a flow in which viscous effects are relevant, the numerical scheme is applied
to study the wavy flow past a submerged hydrofoil. Copyright © 2001 John Wiley & Sons, Ltd.

KEY WORDS: free surface flow; level set; two-phase flow; wave breaking

1. INTRODUCTION

Several important phenomena occurring in naval hydrodynamics, such as wave breaking,
cavitation and ventilation, cannot be properly faced with standard numerical techniques. As an
example, suitable models based on simplified assumptions [1] are usually employed to prevent
the occurrence of complex topological configurations of the air–water interface [2].

Historically, the first attempt to treat flows with complex interface was made by Harlow and
Welch [3], who developed the marker and cell (MAC) method. In this method, the interface is
reconstructed by following massless interface particles that move with the local fluid velocity.
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This interesting approach, although successively modified and improved by several authors
[4,5], has proved to be computationally expensive. Rather than following marker particles, Hirt
and Nichols [6] introduced the volume of fluid (VOF) approach in which a marker function,
the void fraction, is transported by the flow to describe the interface motion.

Recently, approaches that describe the two-phase flow of immiscible fluids have been
developed: some are essentially based on a VOF approach [7,8], whereas others are based on
the level set (LS) technique [9,10]. In both cases, the two-phase flow is approximated by the
flow of a single fluid whose physical properties, namely density and viscosity, vary across the
interface. If compressible effects can be neglected in the two phases, the distribution of fluid
properties in the whole domain is only related to the interface motion. Hence, besides the
integration of the fluid dynamic equations, a transport equation for an additional variable
locating the interface is solved. In doing that, particular attention is devoted to keep the
transition zone of the fluid properties as narrow as possible.

In the VOF approach, the additional variable is the volume concentration and local fluid
properties are expressed as a weighted average of the properties of the fluids, by using the
volume concentration as a weight function. The volume concentration is convected with the
flow by integrating the corresponding transport equation. This kind of approach has been used
by Muzaferjia et al. [11] and by Azcueta et al. [12], showing that the method is very efficient
in dealing with complex free surface configurations. However, due to the jump of the
additional variable at the interface, special care must be posed in the numerical treatment of
its transport equation to keep the interface sharp.

In the LS technique, the fluid density and viscosity are expressed as a smooth function of the
distance from the interface. The jump in fluid properties is spread in a small neighborhood of
the interface, whose thickness, related to the cell size, is kept constant in time. The interface
location is captured as the zero contour of a scalar function that represents the signed distance
from the interface. This function being continuous across the interface, the numerical treat-
ment of its kinematic equation is not difficult. This method has been applied to two-
dimensional wave problems by Vogt and Larsson [13], which carefully investigated the effect
of the involved parameters on the numerical solution. The good agreement with experimental
data validates the numerical technique.

In this paper, the LS technique is coupled with a finite difference Navier–Stokes solver for
an incompressible fluid and the method is applied to study several kinds of unsteady free
surface flows. The governing fluid dynamics equations, written in curvilinear co-ordinates, are
solved in the whole domain with a fractional step procedure, following the scheme suggested
by Zang et al. [14] and modified to account for variable density and viscosity. Turbulence and
surface tension effects are not included at this stage of the development.

One of the critical items of the LS procedure concerns the re-initialization of the distance
function in order to keep constant the thickness of the transition zone. In Reference [10] this
is done in a very efficient way, without the need for reconstructing the interface location at
each time step, with a great advantage in terms of computational effort, which may become
crucial when considering three-dimensional applications. However, with the present paper
being mainly concerned with two-dimensional problems, the interface location is reconstructed
and the distance function is re-initialized at each time step, leading to a simple numerical
procedure.
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The method is applied to solve some two-dimensional free surface problems. The standing
wave of a fluid in a tank and the wave system generated behind a bump starting impulsively
from rest are studied. The results are compared with those obtained by solving the correspond-
ing inviscid flow via moving grid approaches. Next, the flow over a high bump, leading to a
wave breaking, is analyzed to assess the capability of the numerical method to deal with
complex free surface configurations. The method is finally applied to simulate the wavy flow
generated past a submerged hydrofoil.

2. THE NAVIER–STOKES SOLVER FOR THE TWO-PHASE FLOW

The two-phase flow is approximated by the flow of a single fluid whose properties change
smoothly across the air–water interface. If compressibility effects can be neglected, fluid
density and viscosity are simply convected by the flow field. Due to the interface kinematics,
the spatial distribution of the fluid properties varies with time. The dimensionless Navier–
Stokes equations, in curvilinear co-ordinates, for an incompressible fluid with variable density
and viscosity are
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where xi and ui are the ith Cartesian co-ordinate and velocity components, p is the pressure,
di2/Fr2 is the gravity term, Fr=U/
gL is the Froude number, dij is Kronecker’s delta. U and
L are the reference values for the velocity and the length respectively, whereas fluid density and
viscosity are made non-dimensional by using the water values 7w, mw; the Reynolds number is
defined as Re=7wUL/mw. J−1 is the inverse of the Jacobian or the volume of the cell, and
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is the volume flux normal to the jm iso-surface. Finally, Gmn is the mesh skewness tensor
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Surface tension and turbulence modeling are not included at this stage of the development.
The solution of the above equations is obtained with a numerical scheme similar to that

described in Zang et al. [14], with only minor adjustments related to the use of variable fluid
properties. Cartesian velocities and pressure are defined at the cell center, whereas volume
fluxes are defined at the mid-point of the cell faces, where velocities are computed through a
quadratic upwind interpolation (QUICK). In this way, the volume flux is conserved on each
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control volume and the momentum equation can be written in conservative form. A semi-
implicit scheme is adopted for the integration in time of Equation (2). The explicit terms are
computed with the Adam–Bashfort scheme, while a Crank–Nicolson discretization is em-
ployed for the implicit terms. Since the grid does not depend on time, the discretized form of
the momentum equation is
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where Dt= tn+1− tn and Dtp= tn− tn−1; Ci
n represents the convective terms at the time step

n, Ri is the gradient operator in curvilinear co-ordinates; DI and DE are the diagonal and
off-diagonal diffusive operators respectively.

Due to the explicit scheme adopted for the convective terms, the time integration step must
be bounded. To this aim, it is chosen at each iteration so that the maximum of the quantity
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in the whole computational domain is constant in time and equal to 0.8 in all the numerical
simulations here reported, where CFL is the Courant–Friedrich–Lewy number.

A fractional step approach is adopted to solve Equation (5). Since the pressure field at the
new time step is unknown, an auxiliary velocity field ui* is introduced and the problem is split
into two sub-steps
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Equation (6) is solved to determine the auxiliary velocity field ui* (predictor step), whereas, in
Equation (7), it is assumed that the velocity field ui

n+1 is related to the auxiliary one by the
following relation (corrector step):

ui
n+1−ui*=

Dt
7J−1 Ri(fn+1) (8)
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By substituting Equation (8) into Equation (7), it can be easily seen that
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Thus, once the scalar function f is computed, the above relation can be used to calculate the
pressure field. In order to save CPU time, as suggested by Rosenfeld et al. [15] it can be
assumed that pn+1=fn+1+O(Dt2).

The corrector function f is determined by enforcing the continuity equation. From
Equation (8)
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Since Cartesian velocity components are defined at the cell centers, a quadratic upwind
interpolation is used to reconstruct the auxiliary fluxes at the cell faces. Using the above
expression in the continuity equation (1), a Poisson equation for the corrector f is obtained
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If the velocity is assigned at the boundaries, Equation (10) yields a Neumann boundary
condition for Equation (11).

3. KINEMATICS OF THE AIR–WATER INTERFACE

To close the system of differential equations, two transport equations for density and viscosity
should be considered

(7

(t
+u ·97=0,

(m
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Due to the jump of fluid properties at the interface, the integration of these equations is not
straightforward. In the LS technique, this problem is overcome by assuming the fluid
properties as smooth functions of the signed normal distance d from the interface. The distance
d can be computed for each grid point at t=0, the free surface location being given. It is
assumed d\0 in water and dB0 in air. During the time evolution, d can be seen as a property
convected by the flow
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(d
(t

+u ·9d=0 (12)

The interface being a material surface, it is always identified with the level d=0.
The smoothing of the jump of fluid properties is achieved by spreading the jump on a small

neighborhood of the interface whose thickness, related to the cell size, is kept constant in time
[10,16]. Hence, fluid properties are assumed to vary with the distance as follows:
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d being the half width of the region along which the jump is spread. In the computation, the
thickness d is chosen so that the jump covers at least three cells in the direction normal to the
interface.

Actually, the integration of Equation (12) does not ensure that the thickness of the jump
region is kept constant in space and time. To avoid the spreading or concentration of the
transition zone, the distance function is re-initialized at each time step as the normal distance
from the actual interface. Several schemes have been developed to this aim [17,18]. For
instance, this can be done by iterating to steady state the equation

(d
(t

=S(d)(1− �9d �) (13)

where S(d) is a sign function that is zero on the interface. This procedure, although requiring
suitable numerical schemes, is very efficient since it avoids the reconstruction of the interface
at each time step [10], which, for three-dimensional problems, is computationally expensive.

However, with this work being concerned only with two-dimensional flows, the reconstruc-
tion is not too heavy. Thus, at each time step the interface is found by locating the position
of the level d=0 and the distance function d(x, t) is recomputed at each cell center. This
simplified procedure is found effective in terms of mass conservation and in dealing with flows
characterized by complex interface topologies.

4. NUMERICAL RESULTS

The developed numerical method is applied to simulate several kinds of unsteady free surface
flows, ranging from simple to complex interface topologies. In the first application, a simple
test case is used to evaluate the converge properties of the scheme. Next, the wavy flow over
a bump is studied in both breaking and non-breaking regime. Finally, the method is applied
to study the wavy flow past a submerged hydrofoil.
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4.1. Oscillating flow in a tank

In this first test, the oscillating flow in a tank is studied. This problem allows us to evaluate
the capabilities of the numerical method to describe free surface dynamics and to preserve
mass. Results are then compared with those obtained by Lilek [19] for an inviscid fluid.

The tank extends horizontally from x= −0.5 to x=0.5 and from y=0 to y=1.4 in the
vertical direction. The free surface elevation at t=0 is

y(x)=1−0.01 sin(px)

so that the height of the interface over the bottom is hl(0)=1.01 on the left wall and
hr(0)=0.99 on the right one. For this flow, U=
gL is assumed as a reference value for the
velocity, so that the Froude number is Fr=1. The Reynolds number is Re=106 and the
following values are used for density and dynamic viscosity in air:

7a/7w=0.00125, ma/mw=18×10−3

To evaluate the grid sensitivity, three grids are used: the coarse one has 20 equally spaced cells
in the horizontal direction and 140 cells in the vertical direction, suitably clustered close to the
free surface region. In particular, in the region y� (0.985, 1.015), a uniform vertical spacing
Dy=0.0005 is adopted. The medium and fine grids are obtained by halving the cell size in
both directions. The width of the jump region is fixed in order to cover eight grid cells, being
d=0.002 for the coarse grid, d=0.001 for the medium grid and d=0.0005 for the finest one.

Figure 1 shows the time histories of the free surface height on the left wall of the tank for
different grid resolutions and the inviscid result obtained by Lilek [Personal Communications,
1999]. In the plot, the curve at d=0 is chosen to represent the free surface location obtained
with the LS technique. As expected, a fine resolution is required to avoid an excessive damping
of the free surface height.

Figure 1. Time histories of the free surface height on the left wall of the tank: (diamonds) Lilek;
(dash-dotted) 20×140; (dashed) 40×280; (solid) 80×560.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 281–297
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As a measure of the mass conservation, the ratio between the variation of the mean free
surface height hm(t) with respect to its initial value hm(0)=1 and the maximum free surface
displacement hl(0)−hm(0)=0.01, is chosen. In Figure 2, the time histories of this parameter
for different grid resolutions are reported; as expected, the better conservation is achieved for
the finer grid.

Besides grid sensitivity, this test is also used to investigate the role of the width of the jump
region while keeping fixed the computational grid. For the medium grid, computations are
performed by using also d=0.0005 and d=0.002, i.e., the jump is spread over 4 and 16 grid
cells. It is interesting to note that this parameter does not affect the free surface dynamics
(Figure 3), the three curves being practically indistinguishable, whereas a larger value may have
some effects on the mass conservation (Figure 4).

4.2. Flow o6er a bump: non-breaking regime

In the second application, the flow over a bump in a non-breaking regime is simulated, and the
results are compared with those obtained by solving the corresponding potential flow problem

Figure 2. Effect of the grid resolution on the mass conservation: (dash-dotted) 20×140; (dashed)
40×280; (solid) 80×560.

Figure 3. Time histories of the free surface height on the left wall of the tank: (solid) d=0.0005; (dashed)
d=0.001; (dash-dotted) d=0.002.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 281–297
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Figure 4. Effect of the width of the jump region on the mass conservation: (solid) d=0.0005; (dashed)
d=0.001; (dash-dotted) d=0.002.

through a panel method in order to assess the capability of the numerical procedure to
correctly model the wave dynamics. The bump is placed on the bottom of a channel with a still
water level h=1 and has a geometric profile
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d being the maximum height of the bump. At t=0, the bump is suddenly started at U=1 and
Fr=0.707; the resulting wavy flow is studied in a frame of reference moving with the bump.
In the computations, d=0.1 and a=0.5 are chosen. The computational domain extends from
x= −14 to x=14 horizontally and from the bottom profile (14) to y=0.4 vertically.

Both in the LS approach and in the panel method, numerical beaches [13,20] are employed
to damp out outgoing waves at the computational boundaries. In particular, for the LS the
transport equation of the distance function is modified as follows:

(d
(t

= −u ·9d−g(y+d)

where g is a damping coefficient that grows quadratically from zero to a given value at the
outer boundaries. In the above simulations, g"0 when x� (−14, −8) and x� (8, 14); the limit
value is g=2. In order to have a fair comparison, free slip boundary conditions are used at the
top and bottom boundaries.

For the computation with the LS, a grid with 220×71 cells is used. Cells are clustered
around the bump in the horizontal direction, whereas a uniform vertical spacing Dy=0.01 is
used for y� (−0.2, 0.2). The width of the jump region is fixed as d=0.03. About 240 elements
are employed to discretize the free surface in the panel method.
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In Figure 5, the free surface profiles obtained by the LS and by the panel method at t=24
are shown. The comparison exhibits an excellent agreement, confirming that the LS method
mirrors the wave dynamics given by the panel method. As it can be observed in Figure 6, when
the simulation proceed further on, some discrepancy occurs, probably in consequence of the
different beach models employed in the two approaches.

In Figure 7, the velocity field in air and water along a wave period is shown together with
two enlarged views close to a crest and a trough. The stripes represent the variable density
region while, for the sake of clarity, velocities are plotted at every other grid point and the
uniform velocity (u, 6)= (1, 0) is subtracted from the local velocity vector to emphasize the
local behavior.

It is interesting to note the coupled behavior of the velocity field in the two fluids. According
to the classical theory of water waves, near the crests the water moves in the same direction of
the wave while near the troughs it moves back. At the same time the flow in air shows an
opposite behavior with respect to the flow in water.

Figure 5. Comparison between free surface profiles obtained by LS (solid line) and panel method (dashed
line) at t=24.

Figure 6. Comparison between free surface profiles obtained by LS (solid line) and panel method (dashed
line) at t=150.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 281–297
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Figure 7. Velocity field in air and water. For the sake of clarity velocities are plotted every second grid
point and the uniform horizontal velocity is subtracted from the local value.

4.3. Flow o6er a bump: breaking regime

It may be observed that the results presented so far could be more efficiently achieved with
other numerical techniques; of course, the aim of these numerical tests was to check the
properties of the LS method before applying it to more complicated problems.

Since the method is developed to deal with complex air–water interface, the flow over a
large bump, leading to wave breaking, is analyzed. In this case, the bump extends from
x= −1 to x=1 and has a maximum height of d=0.4. For these conditions, the panel method
predicts the occurrence of breaking at t#3.6.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 281–297



A. IAFRATI, A. DI MASCIO AND E. F. CAMPANA292

In order to describe the different phases characterizing the breaking phenomenon, namely
the steep wave formation, the jet development, the splash-up and the entrainment of air, the
grid is refined for x� (0, 5). Moreover, the computational domain is enlarged in the vertical
direction up to y=1.6 because of the expected high crest behind the bump. The complete grid
used in the simulations is 537×130. Simulations are carried out at Re=104 and ma/mw=18×
10−3.

In Figure 8, the free surface profiles obtained at t=3.6 by the panel method and by the LS
are compared; despite the steep wave, a good agreement between the two solutions is observed.
In the simulation with the LS, some numerical instabilities on the free surface develop close to
the first trough and propagate downstream. These are probably related to the insufficient
spatial resolution of the viscous terms.

The inviscid simulation, because of the algorithm adopted, is not able to proceed beyond the
breaking onset. In contrast, the LS simulation is performed well beyond the wave breaking and
several splash-up formations are observed. In Figure 9 free surface profiles are plotted with
time step Dt=0.2 from t=4.2 up to t=5.8. In Figure 10, profiles are plotted with time step
Dt=0.5 from t=6.5 up to t=8.5.

It can be noticed that from t=4.2 to t=5, the first wave crest behind the bump is increasing
in size and steepness. Due to the velocity field induced by this process, a first jet develops at
t#5 but its edge breaks into bubbles that are numerically dissipated before impacting the
water. The same effect occurs also later as it can be observed at t=5.8. In this case, however,
the bubble is larger and falls onto the free surface before being dissipated. Numerical diffusion
can be also responsible for the damping of the slight free surface oscillations that are evident
at t=5.4 and t=5.6 at the wave crest and that disappear later.

After t=6, the jet is sufficiently developed so that it impacts the free surface before t=6.5.
The impact of the jet on the free surface lead to an air entrainment and also to a splash-up just
ahead of the impact point onto the free surface. As experimentally observed [21], this splash-up
evolves and eventually its forward face impacts again on the free surface at t� (7.5, 8), leading
to another air entrainment and another splash-up process. This second splash-up jet impacts
on the free surface at t� (8, 8.5) and the process proceeds in the same way as before, even
though the splash-up intensity gradually decreases.

Figure 8. Comparison between free surface profiles obtained by LS (solid line) and panel method (dashed
line) at t=3.6.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 281–297
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Figure 9. Several configurations of the free surface showing the jet development. A vertical shift Dy=1
is applied between two successive configurations. (t=4.2�5.8, step 0.2).

Although a quantitative comparison is not established, the dynamics described are in
qualitative agreement with the experimental observation discussed by Bonmarin [21]. He found
that, depending on the flow conditions, after the first splash-up the flow can either degenerate
into a chaotic motion or into successive splash-up cycles, as it seems to be the case for the
present simulation.

In Figure 11, the velocity field in air and water at the instant when the jet hits the free
surface is shown. For the sake of clarity, velocity vectors are displayed at every third grid point
in both directions and the uniform horizontal velocity is subtracted from the local value to
emphasize the local behavior. Due to the jet impingement, an intense flow is induced in air,
leading to the formation of two counter rotating vortices immediately ahead of the impact
point. In water, the flow toward the jet and also the strong backward velocity that occurs
below the trough up to the head of the breaker can be observed. Also this effect was confirmed
experimentally [22].

4.4. Flow past a submerged hydrofoil

The above applications are carried out essentially for validating the capability of the numerical
approach in describing the dynamics of the free surface, even when complex topologies of the
interface are involved. Since comparisons were established with inviscid numerical solutions,
only inertial-dominated flows were considered.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 281–297
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Figure 10. Several configurations of the free surface showing successive splash-up processes (t=6.5�
8.5, step 0.5).

As an example of a problem where viscous effects play a significant role, the wavy flow
generated behind an inclined hydrofoil, moving beneath the free surface, is shown in Figure 12.
The solid body is modeled via a body forces approach [23].

The hydrofoil is an NACA 0012, 5° angle of attack and the depth at the quarter of chord
is 1.034. Numerical simulations are performed with Re=104 and Fr=0.567. In Figure 12, the
vorticity contours in the whole domain are shown; the shear layer near y=0 represents the free
surface. Due to the moderate Reynolds number, an unsteady separation from the suction side
occurs; it may be interesting to note that the dipole structures shedded behind the hydrofoil,
which rise up and interact with the free surface. Verification and validation of these kind of
flows will be the subject of a future work.

5. CONCLUSIONS

In the present paper an LS approach is used to investigate several unsteady two-dimensional
free surface flows. A finite difference Navier–Stokes solver in curvilinear co-ordinates is used
in conjunction with the LS technique to compute the flow field both in air and water.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 281–297
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Figure 11. Velocity field in air and water at the jet impingement (t=6.3). For the sake of clarity,
velocities are plotted every third grid point and, to emphasize the local behavior, the uniform horizontal

velocity is subtracted from the local value.

Figure 12. Vorticity contours for the flow about a submerged hydrofoil. Contours about y=0 represent
the shear layer at the interface.

The method is applied to the analysis of three classical hydrodynamic problems, namely the
oscillating flow in a tank, the wave system generated behind a bump moving in a channel and
the wavy flow generated by the motion of a submerged hydrofoil. The numerical method
shows its capability in simulating different free surface problems and in dealing with complex
interface shapes. For the all analyzed flows, results agree satisfactorily with experimental
observations.
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In the simulation of the two-dimensional wavy flow past a submerged hydrofoil, due to the
moderate Reynolds number, an intense flow separation from the suction side occurs, and
vorticity structures, released by the hydrofoil, rise up and strongly interacts with the free
surface downstream.

From the numerical point of view, several improvements may be pursed. The most
important concerns the turbulence modeling and surface tension effects, that will be included
in the method in the sequel of the research.
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